Niaspan inhibits diabetic retinopathy-induced vascular inflammation by downregulating the tumor necrosis factor-α pathway

نویسندگان

  • Yang Wang
  • Xiangda Meng
  • Hua Yan
چکیده

Diabetic retinopathy (DR) is a serious microvascular complication of diabetes and a major cause of blindness in the developing world. Early DR is characterized by vascular neuroinflammation, cell apoptosis and breakdown of the blood‑retinal barrier (BRB). However, optimal treatment options and associated mechanisms remain unclear. Niaspan, which is widely used in the prevention and treatment of hyperlipidemia‑associated diseases, has been reported to inhibit inflammation. However, the effects of Niaspan and the mechanisms underlying the anti‑inflammatory effects of Niaspan on DR have yet to be reported. The present study aimed to investigate the anti‑inflammatory effects and mechanisms of Niaspan in a rat model of DR. Rats with DR exhibited a significant increase in BRB breakdown, retinal apoptosis, and tumor necrosis factor‑α (TNF‑α) and nuclear factor‑κB (NF‑κB) expression. In addition, the expression levels of inducible nitric oxide synthase (iNOS) and intercellular cell adhesion molecule‑1 (ICAM‑1) were increased in the retinas of DR rats compared with in the normal control group. In conclusion, treatment with Niaspan significantly improved clinical and histopathological outcomes; decreased the expression levels of TNF‑α, NF‑κB, iNOS and ICAM‑1; and decreased apoptosis and BRB breakdown, as compared with in the retinas of DR rats. The present study is the first, to the best of our knowledge, to demonstrate that Niaspan treatment ameliorates DR by inhibiting inflammation, and also suggests that the TNF‑α pathway may contribute to the beneficial effects of Niaspan treatment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Therapeutic Potential of a Monoclonal Antibody Blocking the Wnt Pathway in Diabetic Retinopathy

Dysregulation of Wnt/β-catenin signaling contributes to the development of diabetic retinopathy by inducing retinal inflammation, vascular leakage, and neovascularization. Here, we evaluated the inhibitory effect of a monoclonal antibody (Mab) specific for the E1E2 domain of Wnt coreceptor low-density lipoprotein receptor-related protein 6, Mab2F1, on canonical Wnt signaling and its therapeutic...

متن کامل

Naringin attenuates diabetic retinopathy by inhibiting inflammation, oxidative stress and NF-κB activation in vivo and in vitro

Objective(s): Naringin, an essential flavonoid, inhibits inflammatory response and oxidative stress in diabetes. However, whether naringin has beneficial effects on diabetic retinopathy (DR) remains unknown. Materials and Methods: Streptozotocin (STZ, 65 mg/kg) was intraperitoneally injected into male rats (8 weeks old weighting 200-250 g) to establish diabetic model, then naringin (20, 40 or 8...

متن کامل

MicroRNA-126 contributes to Niaspan treatment induced vascular restoration after diabetic retinopathy

Diabetic retinopathy (DR) is a serious microvascular complication of diabetes and a major cause of blindness in the developing world. Early diabetic retinopathy is characterized by a loss of pericytes and vascular endothelial cells, a breakdown of the blood-retinal barrier, vascular dysfunction and vascular-neuroinflammation. However, optimal treatment options and related mechanisms are still u...

متن کامل

The Effect of Aerobic Training on Tumor Necrosis Factor alpha, Hypoxia-Inducible Factor-1 alpha & Vascular Endothelial Growth Factor Gene Expression in Cardiac Tissue of Diabetic Rats

Objective: The goal of this research was to determine the influence of 4 weeks aerobic training on gene expression of tumor necrosis factor alpha (TNF-α), hypoxia-inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF) in the cardiac tissue of diabetic rats. Materials and Methods: In an experimental study, 30 male wistar rats were partitioned into three groups (n=10), d...

متن کامل

The Unconventional Role of Acid Sphingomyelinase in Regulation of Retinal Microangiopathy in Diabetic Human and Animal Models

OBJECTIVE Acid sphingomyelinase (ASM) is an important early responder in inflammatory cytokine signaling. The role of ASM in retinal vascular inflammation and vessel loss associated with diabetic retinopathy is not known and represents the goal of this study. RESEARCH DESIGN AND METHODS Protein and gene expression profiles were determined by quantitative RT-PCR and Western blot. ASM activity ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2017